

An Optical Critical Dimension (OCD) Study with Standard Structures

Qi Wang1,2 , Qiang Wu1,2 , Xianhe Liu1,2 , Yanli Li1,2*

1School of Micro-Electronics, Fudan University, No. 825 Zhangheng Road, Shanghai 200433, China 2National Integrated Circuit Innovation Center, Pudong New Area, Shanghai 201203, China *Corresponding Author's Email : wangqi_fd@fudan.edu.cn, li_yanli@fudan.edu.cn

Optical Critical Dimension(OCD) Technique in Semiconductor Metrology

Pros

- **Ⅰ source

a fast, non-destruction** and **contamination free**
- **✓** in-line-compatibility and **process integrable**
- ü **structure profile sensitive and good 3D capability, multi parameters**
- ü **comparison with local methods to eliminate random errors**

Cons

- p **Parametric correlation, unambiguity**
- \Box Non-uniqueness of solutions for **inverse light scattering problem**
- p **Inapplicable to isolated lines**

Brief Introduction of OCD technique

OCD technique measures property changes of the light caused by the interaction with the sample, use information to reconstruct the structures under test.

1. Properties of light, that can be measured with scatterometric methods are:

- Radiant power (diffr. efficiency h, amplitude) (type: pol. reflectometer, class. scatterometer)
- Direction of propagation (type: diffractometer)
- State of polarisation (type: ellipsometer, Mueller matrix)
- Phase information

(type: interferometric scatterometer)

- 2. Classification after independent measurement variable:
	- a). spectroscopic b). angular

Brief Introduction of OCD technique

OCD technique measures property changes of the light caused by the interaction with the sample, use information to reconstruct the structures under test.

1. Properties of light, that can be measured with **Current commercial OCD tools** scatterometric methods are:

• Radiant power (diffr. efficiency h, amplitude)

(type: pol. reflectometer, class. scatterometer)

- Direction of propagation (type: diffractometer)
- State of polarisation

(type: ellipsometer, Mueller matrix)

• Phase information

(type: interferometric scatterometer)

2. Classification after independent measurement variable:

a). spectroscopic b). angular

OCD: A Model-Based Optical Metrology

forward problem:

Rigorous Calculation of Diffracted E- and H-fields by Numerical Solution of Maxwell's equations:

- \triangleright Rigorous Coupled-Wave Analysis (RCWA)
- \triangleright The Finite-Difference Time- Domain Method (FDTD)
- \triangleright Finite Element Method(FEM)
- \triangleright waveguide,...

inverse problem

- library approach:
	- \checkmark fast, robust, easy to use
	- \Box long set-up time
	- \Box large memory resources
- nonlinear optimisation:
	- \checkmark more flexible, accurate
	- \Box significantly slower
	- large computational resources

OCD Challenges in Advanced Technology Nodes

 \Box Size shrinkage challenges for optical methods:

• Sensitivity

• Accuracy

- size \sim wavelength/100
- \Box Increasing complexity
	- increasing parameter correlations
	- ambiguity issues
	- computations costs (time and memory issues) $\Big|_{\text{Substrate (n.)}}$
- \Box Numerical Approximations:
	- periodic extension
	- computational volume and discretisation
- \Box Infinite Interaction Area
	- nte Interaction Area

	finite spot size of illuminating beam

	The spot size of illuminating beam
	- finite target grating size
- \Box Neglection of Local Parameter Variations
	- CDU & stiching
	- stochastic parameters: depolarisation & diffuse scattering $\frac{2}{5}$
	- surface roughness, LER & LWR
- \Box Geometrical Structure Model
	- not just binary or trapezoidal
	- corner roundling

Modeling: Rigorous Coupled-Wave Analysis (RCWA)

Dr. M. G."Jim" Moharam Dr. Thomas K. Gaylord Dr Li Lifeng

- ü **In 1980s, RCWA is developed byDr.Moharam and Dr.Gaylord**
- ü **In 1990s, Dr.Li promoted the S-matrix and R-matrix algorithms in grating numerical calculations**

Alternate Names for this Method:

- **• Rigorous Coupled-Wave Analysis**
- **• Fourier Modal Method**
- **• Transfer Matrix Method with a Plane Wave Basis**

Angular Comparison of SiO² Optical Gratings Standard Structures for 28/3 nm Nodes

At 28 nm nodes FEOL gate process, min. pitch is 118 nm and min. CD is 55 nm with single expose. For convenience, we use 120 nm pitch optical gratings with 60 nm line-width to build standard structures.

At 3 nm nodes FEOL gate process, min. pitch is 48 nm and min. CD is 24 nm with SADP technique.

 (a)

 $0, 8$

Pitch)
0.6

 (120)

目

Spectroscopic OCD Comparison of and HfO²) for 28/3 nm Nodes

 $- R_s (120 nm Pitch)$

 \triangle R s (48 nm Pitch)

600

600

The reflectance is in the form of R_p and R_s, which represent Fresnel reflection coefficients of p-polarized and s-polarized light respectively.

 (b)

 0.8

tch)

昌

 (120)

 $\sum_{i=1}^{n-1} 0, 0$

 $\omega^{\rm I}$ \mathbb{R} 9 α 0.1 0.2 300 500 400 200 200 400 500 600 700 300 800 Wavelength / nm Wavelength / nm $Si₃N₄$ Optical Gratings (d) $Si₃N₄$ Optical Gratings (c) R_s (120 nm Pitch) • Variation_2nm_R_s(120 nm Pitch) R_s (48 nm Pitch) 0.8 0.8 \blacktriangledown Variation 2nm R s(48 nm Pitch) $\mathrm{Pitch})$ o. 6 富 \overleftrightarrow{a} 0.6 Ξ $\mathbf{H}^{\mathbf{r}}_{\mathbf{r}}$ $\frac{20}{120.4}$ $\frac{60}{20}$ 0.4 $\overline{\mathbf{R}}$ s e a R_p (120 nm Pitch) 0.2 0.2 - Variation_2nm_R_p(120 nm Pitch) $-R_p$ (48 nm Pitch) Variation_2nm_R_p(48 nm Pitch) 800 200 300 400 500 600 700 200 300 400 500 Wavelength / nm Wavelength / nm

SiO₂ Optical Gratings

 R_p (120 nm Pitch)

 R_p (48 nm Pitch)

 \rightarrow Variation 2nm R p(120 nm Pitch)

 \blacktriangledown Variation 2nm R p(48 nm Pitch)

Spectroscopic Sensitivity of OCD Signals with 2 nm Linewidth Variation

- u **Optical gratings made by Si3N⁴ and HfO² has significantly higher OCD signal response sensitivity comparing to those made by SiO² and TiN.**
- u **Optical gratings with 48 nm pitch has a lowersensitivity than gratings with 120 nm pitch.**
- u **To improve the detection limit, it is neccessary to further extend to deeper ultra-violet range.**

Summary and Conclusion

- Model accuracy and precision are dependent on well-developed standard structures' library signatures, the quality of measurement and fittings of the unknown signature.
- The standard optical gratings with line-space structures are simulated at advanced nodes. By tuning detection parameters, such as angle-of-incidence, illumination wavelength, or polarization, both of the angular and spectroscopic results of OCD signals are obtained, and the comparison of the signal sensitivity of different materials is realized.
- With this study, the OCD model of standard structures is acheived to understand the mechanism of optical scattering signal response, which can be helpful to detect and measure structures in the advanced technology nodes.
- As future work, we will study the sensitivity of the fit to the individual parameter dimension, and will investigate the angle resolved focused beam scatterometry with high NA to measure more complex structures.

