

Rigorous-Simulation-Driven OPC Solution

Xiaodong Meng, <u>Cai Chen</u> Edward Li, Lei Chen Zilong Wang, Liang Zhu

Examples

Conclusions

Background - Lithography

Lithography is a key procedure in the manufacturing process of integrated circuits.

Background – OPE

Lithography process control capability vs. lithography process window

Litho. wavelength vs. silicon feature size

Background - OPC

- OPC stands for <u>Optical Proximity Correction</u>. It enables low-k1 lithography by changing the pattern shapes on the mask to correct for the non-linear process of printing those patterns on a wafer. The final goal is to improve the device performance and yield.
- The OPC methodology consists of two parts: "Model" and "Recipe".

OPC flow

Data for OPC solutions

Process parameter	Example of process parameter						
Optic Parameters	Film					ers	
Wavelength, NA	Optic parameters		film name	n(refraction)	k(extinction)		thickness(nm)
Source (Sigma or source map)	optical settings	example	TARC_SOG	1.69	0.2	4	30
Film Parameters	lambda(nm)	193	PR	1.74	0.01		250
N, K, T for each layer including photoresist	NA	1 25	BARC_SOC	1.53	0.38		130
Mask Parameters		1.35	SiO2	1.46	0		9.6
Mask Tone	refractive index	1.44	SiON	2.02	0.55		30
Mask Type (PSM or BIN)	source_type	annular	TiN	1.878	1.3)9	30
Mask 3D information	source parameter	sigma out: 0.9/sigma in: 0.6	Ti	1.234	1.2	1	20
	source polarization	XY	ESLK	1.57	0.007	997	10
Test Graph	source map(optional)	XXX.src	Mask 3D				
Test Pattern	Mask parameters		mask 3D info		example		
Anchor Information (on design rule			mask film stack		11	k	thickness(nm)
CD/Space)	mask info	example	substrate(Quarz)		1.56	0	inf
 SRAM, StandCell and other design structure Hotspot Graphics 	mask tone	clear or dark	MoSi		2.417	-0.59	68
Wafer measurement results (corresponding	mask type	attPSM or altPSM or binary	Substrate etch depth(nm)		10		
CD and SEM photos)	field transmission and phase	0.06,180	Absorber sidewall angle(degree)		87		
Correction layout GDS file, target graph required by	In the case of	acking real wafer	measure	ment res	sults,	the	S-Litho eal_data
PIE (or provide related bias table)	(including simulati	on of the pattern to	be meas	ured, SR	AM,	stan	dard cell

• Layer mapping

全芯智造公司保密专有,仅供内部使用,禁止外传/AMEDAC Confidential and Proprietary, no publicity and internal use only

design structures and hotspot simulation SEM results).

Rigorous simulation

Rigorous simulation is a computer-aided simulation technology based on physical and mathematical models of actual production process parameters.

OPC model (quasi-resist model, compact model)

Simulation wafer data replace real wafer data in the early stage of process development.

Enabling production-ready solutions by predictive simulation

OPC solution based on rigorous simulation

Practice Case – Poisson Curve

Poisson Curves of ISO Pattern

Poisson Curves of Dense Pattern

- Quasi-Resist: the model calibrated using quasi-wafer data by rigorous simulation
- Pure Optical: only optical parameters were used when building the model
- S-Litho: the results obtained by S-Litho software (as reference)
- > S-Litho is considered as an accurate model
- Results show that the quasi-resist model is more reliable

Practice Case – Correction & Simulation

- POC: pure optical model corrected
- POS: pure optical model simulated
- QRC: quasi-resist model corrected
- QRS: quasi-resist model simulated
- SS: S-Litho simulated (Validation)

Process window analysis, focus = ±40 nm

Conclusion

Rigorous simulation, as a prediction and optimization tool, is of great significance in the application of lithography technology:

Improving production efficiency

Through rigorous simulation, the lithography effect under different process parameters can be quickly predicted, reducing the number and time of experiments in actual production. Optimize process parameters

Rigorous simulation can accurately simulate various factors in the lithography process, and through the adjustment of process parameters, the optimal lithography effect can be found, improving product performance and yield.

03 Reducing costs Through accurate simulation, the optimal lithography

I hrough accurate simulation, the optimal lithography effect can be predicted during the experimental stage, reducing waste in actual production and lowering production costs.

Thank You!

•

www.amedac.com