

Implementing an OPC-based Analysis Method for Evaluating the Capabilities of Photoresist and Identifying Hot Spots

XiaoLong Wang^{1,*}, XueMei Zhao¹, BiCheng Chen², Chen Shen², QunLiang Ni¹, NanNan Zhang¹, ZhiMang Shao¹, WenHui Chen², LianFeng Guo², QingFeng Xue¹ ¹GalaxyCore Semiconductor Limited, Shanghai, China, 200000; ² ASML-Brion, Shanghai, China, 200000; * peter_wang1@gcoreinc.com

Background

More and more Chinese resist vendors into mature Semiconductor generation

Challenge: If use more strict criteria as fab before testing resist going to fab, the resist implement safety and success rate will be much better and easier.

Traditional Resist vendor promotion information list

Content

> If resist qualify fail, One learning cycle will be more than half year, some vendor will be no more chance again.

Major provide data information	Disadvanta	age		
Install base	Overstate r Different t	mos time,	uired for different fab to compare	
Spin Curve/Swing Curve	/	OPC can cover!		
Process window data Dense/ISO FEM/Cross-Section MEFF, Linearity etc(very few)	 Don't know real product Hot Spot process window No Post OPC result, data only limited to single structure Illumination source is not suitable for actual litho process 			

Traditional OPC practice

Content

Traditional OPC set up is based on the fab conditions provided by the lithography department and the information is confidential.

ALAXYCORE

The New Concept of ORD (Optical-Resist Delta)

Modular structure correspond to real process.

Optical model : OPC simulation result base on source+machine+mask+filmstack NK value

Resist model: OPC output with resist terms base on collected wafer data

- Acid diffusion
- Neighbor pattern influence
- Local pattern density effect
- Acid-base concentration
- (Contrast dependent resist bias)

The New Concept of ORD (Optical-Resist Delta)

New concept of ORD for photoresist evaluation

> ORD formula:

ΔORD = (Indicator) Optical - (Indicator) Resist

Note: Indicator include **NILS, DOF, MEFF etc.**

NILS will be the major indicator to explain in paper.

(Indicator) Optical : OPC simulation result base on source+machine+mask+filmstack NK value

(Indicator) Resist : OPC output with resist terms base on collected wafer data

 $Criteria > ORD_NILS small \rightarrow Good, ORD_NILS large \rightarrow Poor$

The Real case using ORD Concept to judgment Resist

E.g. condition: 55nm Poly layer

> Data collection for Experiment

	Ouantity		Delta Focus				
			-80	-40	0	40	80
		-5	220	220	220	220	220
Delta	Delta	-2.5	220	220	220	220	220
	Big data	0	220	220	220	220	220
		2.5	220	220	220	220	220
Big data		5	220	220	220	220	220
	Total quantity				5500		

 TABLE I. Data collection condition of poly layer

> Set up Poly layer OPC FEM model

$$EL = \frac{\Delta CD}{E} \frac{dE}{dCD} \times 100\%$$
$$EL \, error = EL_{model} - EL_{wafer}$$

High precision

The Real case using ORD Concept to judgment Resist

- **E.g. condition:** 55nm Poly layer
 - > Results and Discussion for Through Pitch of A and B photoresist

Fig. 3. NILS analysis of different photoresists A and B

Fig. 5. DOF analysis of different photoresists A and B

✓ Conclusion: ORD_NILS B small → Good ORD_NILS A large → Poor

Fig. 4. ORD analysis of different photoresists A and B

11 Jential

The Real case using ORD Concept to judgment Resist

- **E.g. condition:** 55nm Poly layer
 - > Results and Discussion for Hot Spots predict of A and B photoresist

Fig. 6. NILS analysis of different photoresists A and B

Fig. 8. Hot spot for NO.2 of A photoresist

Fig. 9. Hot spot for NO.2 of B photoresist

✓ Conclusion: Hot Spot B small → Good Hot Spot A large → Poor

■ The new ORD approach provides a good complement to the traditional method.

	Traditional	ORD solution			
Source	Resist vendor/fab with different source	Optimize lib DOE source			
Judgement data sample size	General<50	>5000points			
Weak-point detection	Only PWQ scan after production Reticle tape-out	ORD higher point in OPC test mask before product mask tape-out			
Resist Capability Judge Ruler	Different fab, Different Resist vendor, different ruler	Same ruler for one generation+layer (same OPC gauge + same source)			
Resist Selection	Benchmark&put in	ORD data in system pre-check (in-future)			

Outlook

GALAXYC©RE

" One Button "solution maybe be realized in the future

- > For specific generation/layer, OPC data collection base on same source/gauge/anchor point/target.
- > OPC software can integrate different resist ORD information.

THANKS