

## **II** BOE-ziSIM: A Design-Technology-Manufacturing Co-optimization Platform

Beijing Zhongxiangying Technology Co., Ltd



### 1. Introduction

- 2. Litho Simulation
- 3. Design-Technology-Manufacturing Co-optimization
- 4. Experiment Results



## 1. Introduction

#### **I**OLED Fabrication Process



#### 4

BOE 3

#### **I**OLED Photo Process & IC Photo Process



BOE 3

#### Why OLED Simulation is Necessary



BOE

th



## 2. Litho Simulation

#### Background of Litho Simulation

- > In 1975, F. H. Dill from IBM gave the first attempt to describe lithography with mathematical equations.
- In 1979, Andy Neureuther from UC Berkeley released the lithography simulation program SAMPLE, which was made available to the lithography community.
- > In 1985, Chris Mack introduced the model PROLITH (Positive Resist Optical LITHography model).
- > In 2006, Synopsys acquired Sigma-C and released Sentaurus Litho (S-Litho).

| Process Components Computation FIRM Database Administration | ROLITH - (500nm Node Lines i-line.plt)                                             | - 🗆 X |
|-------------------------------------------------------------|------------------------------------------------------------------------------------|-------|
| Process Components                                          | Determine Destance File View Parameters Single Window Help                         | - 6 × |
|                                                             | 🗅 🖙 🖬   😑 📭   🐼 勢 🏚 👕 🖬 🖌 🖉 🔶 🕾 🗇 🖓 🛧 🕭 🖾 🖾 🐺 📗 🖉 🖉                                |       |
|                                                             | Design Feature Design Model Based OPC Mask Writer Mask Simulation Mawwell Advanced |       |
| Exposure Trol Mask Stack Besit & APC's Metrology            | Load Mask Edit Mosk. Save Mark to Dalabate Name. 1D Binary - Line                  |       |
|                                                             | Black = 0% transmittance                                                           |       |
| Exposure Tool 1 Ad                                          | Bias Global Rias (mit 2.0                                                          |       |
| Delet                                                       | Mask Parameters                                                                    |       |
|                                                             | Feature Wridth (nm): 3500.0                                                        |       |
| Filter: Type filter expression here                         | Pitch (m): 6000.0                                                                  |       |
| Name Value Pas                                              |                                                                                    |       |
| Exposure Mode Dose Exposure                                 |                                                                                    |       |
|                                                             |                                                                                    |       |
| Defocus [mm] 0                                              |                                                                                    |       |
| B Spectrum                                                  |                                                                                    |       |
| B Projection                                                |                                                                                    |       |
| B Noise 0.0                                                 |                                                                                    |       |
| Slitter                                                     | Mask Coordinates                                                                   |       |
| Hellicle     Mask Defocus [nm]     128                      | Top (m): 3000.0                                                                    |       |
| Numerics                                                    | Lett (m): -3000.0 3000.0 Right (m)                                                 |       |
|                                                             | Bottom (nn): -3000.0                                                               |       |
|                                                             | Mask Background                                                                    |       |
| -1.00                                                       | Transmittance: 1.0 Phase (deg): 0.0                                                |       |
| -1.00 0.0 1.00                                              |                                                                                    |       |
|                                                             |                                                                                    |       |
|                                                             |                                                                                    |       |
| Select View Source Pupil                                    |                                                                                    |       |
|                                                             |                                                                                    |       |
|                                                             | For Help, press F1 X5.1(64) - 15.1.0.9                                             | NUM   |
| S-litho                                                     | Prolith                                                                            |       |

BOE

#### **Detail of Litho Simulation**







### **Detail of Litho Simulation**





#### **Detail of Litho Simulation**





### Litho Simulation in OLED



Development with Prof. Dong Lisong of IMECAS and Nanjing Chengxin IC research co.,Ltd;

| k Sinulation                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                                                                                                                               |                                                                                                                                                                             |                                          |                                              |             |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------|-------------|--------|
| BO BO                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                                                                                                                               |                                                                                                                                                                             |                                          |                                              |             |        |
| ) Basio 🔘 Advar                                                                                                                                                                               | aced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                                                                                                                                               |                                                                                                                                                                             |                                          |                                              |             |        |
|                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                                                                                                                               |                                                                                                                                                                             |                                          | .00                                          |             |        |
| Production Lin                                                                                                                                                                                | e B7 🗸 equi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | apment LOO1 $\vee$                                     | v .                                                                                                                                                           |                                                                                                                                                                             |                                          | T Exposure                                   |             |        |
| Stack                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                                                                                                                               |                                                                                                                                                                             |                                          |                                              |             |        |
| Type                                                                                                                                                                                          | Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n                                                      | k Thic                                                                                                                                                        | kness [µm] Top Z [µn                                                                                                                                                        | n]                                       | ▼ Stack                                      |             |        |
| 1 Substrate                                                                                                                                                                                   | Sicoutalline v 0.8810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27                                                     | 76400                                                                                                                                                         |                                                                                                                                                                             | Insert                                   | ▼ Resist                                     |             | 14-400 |
|                                                                                                                                                                                               | or crystamic · [0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        | 10400                                                                                                                                                         |                                                                                                                                                                             |                                          | 30                                           | 10023845011 | pour   |
| 000049                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                                                                                                                               |                                                                                                                                                                             | Delete                                   | 09                                           |             |        |
| 2023                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                                                                                                                               |                                                                                                                                                                             | 2,02.57 0 37                             |                                              |             |        |
| Predefined Spe<br>Partially Cohe                                                                                                                                                              | otrum 365nm (i-line)<br>rent 0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ~                                                      | Exposure Dose<br>Dose Correctio                                                                                                                               | [nJ/on'2] 80.00<br>on Ratio 1.000000                                                                                                                                        |                                          |                                              |             |        |
| Predefined Spe<br>Partially Cohe<br>Focus Position<br>Defocus Direct<br>NA (Wafer Side                                                                                                        | otrum 365nm (i-line)<br>rent 0.150<br>[μm] 0.000<br>ion Down ~ Offset fr<br>) 1.000 Reduction Rati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | on the top [un]                                        | Exposure Dose<br>Dose Correction<br>Position is re<br>n] 0.000<br>Wherrations Edi                                                                             | [nJ/on <sup>*</sup> 2] <u>80.00</u><br>on Ratio <u>1.000000</u><br>elative to <u>Top</u> of<br>t Zernike Coefficients                                                       | : stack                                  | kar hin<br>ros                               |             |        |
| Predefined Spe<br>Partially Cohe<br>Focus Position<br>Defocus Direct<br>NA (Wafer Side<br>Grid<br>Grid I/Y [un]                                                                               | otrum 365nm (i-line)<br>rent 0.150<br>[μm] 0.000<br>ion Down ✓ Offset fr<br>) 1.000 Reduction Ration 2.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | on the top [um]                                        | Exposure Dose<br>Dose Correction<br>Position is re-<br>al 0.000<br>Aberrations Edi<br>Grid Z [um]                                                             | [nJ/om*2] [20.00<br>on Ratio [].000000<br>elative to Tom v of<br>t Zernike Coefficients<br>] 0.010                                                                          | stack 000-09<br>000019828<br>2023/09     | 4<br>260 (HA)<br>005                         |             |        |
| Predefined Spe<br>Partially Cohe<br>Focus Position<br>Defocus Direct<br>NA (Wafer Side<br>Grid<br>Grid L/Y [un]<br>Resist<br>S.fs Pub. Time                                                   | otrum 365rm (i-line)<br>rent 0, 150<br>[±km] 0,000<br>ion Born $\sim$ Offset fr<br>) 1.000 Reduction Ration<br>0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | on the top [un]                                        | Exposure Dose<br>Dose Correcti<br>Position is re-<br>n] 0.000<br>Aberrations Edi<br>Grid Z [us]                                                               | [nJ/on <sup>2</sup> 2] <u>20.00</u><br>on Ratio <u>[1.000000</u><br>elative to <u>Too</u> of<br>t Zernike Coefficients<br>] <u>0.010</u>                                    | stack pot-19<br>0000198236<br>2023/09    |                                              |             |        |
| Predefined Spe<br>Partially Cohe<br>Focus Position<br>Defocus Direct<br>NA (Wafer Side<br>Grid<br>Grid I/Y [un]<br>Resist<br>Soft Bake Time<br>Soft Bake Tome                                 | otrum 365rm (i-line)<br>rent 0.150<br>[µm] 0.000<br>ion Bown ~ Offset fr<br>) 1.000 Reduction Rati<br>0.010<br>[z] (60.0<br>.[dec] (60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | on the top [un]                                        | Exposure Dose<br>Dose Correction<br>Position is re-<br>el 0.000<br>Aberrations Edi<br>Grid Z [un]<br>ology Meight                                             | [aJ/em <sup>2</sup> 2] <u>30.00</u><br>en Ratio <u>[1.000000</u><br>elative to <u>Fen</u> of<br>elative to <u>Fen</u> of<br><u>1.0.010</u>                                  | i steek pot-19<br>0000/198286<br>2023/09 | Agen tall<br>Gen tall<br>Cos                 |             |        |
| Predefined Spe<br>Partially Coher<br>Focus Position<br>Defocus Direct<br>NA (Wafer Side<br>Grid J/Y [um]<br>Resist<br>Soft Bake Time<br>Soft Bake Time<br>Arad Bake Time                      | otrum 365rm (i-line)<br>rent (0.150<br>[14n] (0.000<br>[14n] (0.000<br>0.000<br>Reduction Rati<br>0.010<br>[z] (60.0<br>[dec] (60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m the top [um]                                         | Exposure Bose<br>Dose Correcti,<br>Position is re-<br>al 0 000<br>Aberrations Edit<br>Grid Z [un]<br>ology Height<br>iffostion of Heigh<br>Jatime O Abroi     | [nJ/on <sup>2</sup> 2] <u>30.00</u><br>on Ratio <u>1.000000</u><br>elative to <u>ten</u> of<br>t Zernike Coefficients<br>]<br>] <u>0.010</u><br>ght from Resist<br>]<br>use | stack policies                           |                                              |             |        |
| Predefined Spe<br>Partially Cohe<br>Focus Position<br>Defocus Direct<br>NA (Wafer Side<br>Grid<br>Grid X/Y [um]<br>Resist<br>Soft Bake Time<br>Nad Bake Time<br>Hard Bake Time<br>Face Kannes | otrum 365mm (i-line)<br>rent 0,150<br>[µn] 0,000<br>[µn] 0,000<br>(n) 000<br>0,010<br>(z] 60.0<br>(der) 60.0<br>(z] 60.0<br>(der) 60.0<br>(z] 60.0<br>(der) 60.0 | m the top [um]<br>io 1.00 Ab<br>Metro<br>Speci<br>@ Re | Exposure Bose<br>Bose Correction<br>Position is r<br>a) 0.000<br>Aberrations Zdi<br>Grid Z [un]<br>alogy Height<br>ification of Meight<br>ification of Meight | [nJ/m <sup>2</sup> 2] <u>00 00</u><br>on Ratio <u>1000000</u><br>elative to <u>tree</u> of<br>t Zernike Coefficients<br>] <u>0.010</u><br>ght from Resist<br>Jute           |                                          | 2,01 (5)<br>05<br>2,01 (5)<br>2,01 (5)<br>05 |             |        |

**Photo Process UI** 



**Photo Process** 



Post-bake Model Optimization



## 3. Design-Technology-Fabrication Cooptimization

DTCO



#### No Volume Production Optimization



**DTCO:** Picture from Synopsys

#### **OLED Fabrication RCA**



Yield is the most important thing for fabrication, and RCA is the most useful method to improve.

| Work Flow         | Monitor           | Data                                               | Decide              | Demo Analysis         | Improve           |
|-------------------|-------------------|----------------------------------------------------|---------------------|-----------------------|-------------------|
| Work<br>Content   | Monitor Defective | Data Integrated                                    | Find Out Reason     | Mechanism Confirm     | > Improvement     |
| Method            | > Manual          | ≻ Manual + System                                  | > Tool + Experience | > Manual              | ≻ Manual          |
| System            | ≻ BO/YMS          | > MDW/YMS/DFS                                      | ≻ Minitab/JMP       | ≻ No                  | ≻ Np              |
| Percentage        | ≻ Daily           | ≻ 33%                                              | ≻ 21%               | ≻ 30%                 | ≻ 16%             |
| Dis-<br>advantage | Time Delay        | <ul><li>Inefficiency</li><li>No relative</li></ul> | ≻ Experience        | Repeat Data Reduction | No Know-how Reuse |

#### ||Design-Technology-Manufacturing Co-optimization BOE | 🕜



Design-Technology-Manufacturing Co-optimization Structure







BOE-ziSIM: A Design-Technology-Fabrication Co-optimization Platform

#### Process-Device-Yield







## 4. Experiment

#### **||**Experiment

| Defect      | Mura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Background  | <ul> <li>Product: BOEXXX</li> <li>ACT From X.23 to X.27 Defective</li> <li>Measurement Data after X.23</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Method      | > Choose 3% as negative sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Data        | > 1250 Tracking Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Time        | > 5min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| RCA Results | Chance Difference Rank No.1 is Equipment XXX Stacked Bar Output: Page and the p |  |  |
| Relative    | Relative to Dose Value of Photo Equipment XX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |

#### **Process Simulation**



**Process Parameter Turing** 

Yield Improvement time reduce from Day to Minutes!



- Design-Technology-Manufacturing Co-optimization is a new way to improve yield, as well as process and device.
- Process simulation is more important for fabrication.
- More partners are welcome to join this work to complete the relative theory, algorithm, software, and ...



# Thanks very much!