

A Traceable Diffraction-based Overlay Metrology Method: Target Design, Instrumentation and Analysis

Lin Yang Calibration and Testing Center the Fifth Electronic Research Institute of MIIT (CEPREI) 2022.10.22

Outline

- Introduction
- Principle of traceable DBO metrology
- Design of sensitive standard sample
- Prototyping of standard apparatus
- Results and analysis
- Conclusions

Introduction

• Significance of overlay control

Introduction

• Significance of overlay metrology

Overlay metrology is important for process monitor and control!

Nonuniform, incomparable

Uniform, comparable

5

Introduction

• Why we need a traceable overlay metrology?

© CEPREI

Introduction

Principle of traceable overlay metrology Theory of conventional DBO metrology

Stacked grating structure

Hard to characterize buried

layers nondestructively

Hard to verify by comparison

CEPREI

• How to design a traceable DBO metrology method?

- 1. Can be verified by AFM nondestructively.
- 2. Full profile measurement, traceable to SI.

Design of sensitive standard sample

• Design of reference standard sample

SCIENCE

IMPARTIALITY SERVICE VALUE

Design of sensitive standard sample

• Design of reference standard chip

Grating pitch:	$d = 1 \mu m$
Total offset:	$L = \pm f_0 + OVL_{x(y)}$
Total width:	$w = w_1 + w_2$
Distribution factor:	$\alpha = \frac{w_2}{w_1 + w_2}$

Design of sensitive standard sample

• Design of reference standard chip

• Design of standard apparatus

Requirements	Solutions
Traceable to national SI	 Subsystems can be evaluated and traced to SI separately.
Prefer high accuracy than high throughput	 Narrow linewidth laser is better than broadband light source. Flexible to set various configurations to obtain enough diffraction spectra.

Optics diagram of standard apparatus

• Schematic of standard apparatus

• Prototype of standard apparatus

Hardware of standard apparatus

Modelling analysis software

系统设置	状态监测	测量控制			
设备接口 Dev3	- 入射角(*) .00	光欄周期 (sa)	入射波长 (nn)	候报模式	急停
远程地址 10.0.0.10	00	1200	632.8	TH -	标定
洋接 修开	光遥1 (V) .03	起始角度(゜)	采样间隔(゜)	终止角度(゜)	开始测量
使能 去使能	光强2 (V) 2.40	*55	5	55	存储数据
测量结果					
3.5%					
3.0%		-	Λ		
3.0%		- 4.0%	A	1	
3.0% 2.5% 群 2.0%		 	\rightarrow	1	
3.0% 2.5% 财 2.0% 学 1.5%			-^	\mathcal{T}	
3.0% 2.5% 数 2.0% 至 1.5% 亡 1.0%				\mathbb{V}^{+}	
3.0% 2.5% 2.0% 1.5% 1.0% 0.5%					
3.0% 2.5% 2.5% 2.0% 2.0% 2.0% 2.5% 2.0% 2.5% 2.0% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5% 2.5		4.0% -			

Instrument control software

Data processing software

入射伯伴

入射伯(*)

• Traceability of DBO

記字

SCIENCE IMPARTIALITY SERVICE VALUE

• Measurement of samples with nominal DBO value of 50nm

• Measurement of samples with nominal DBO value of 50nm

	<i>L</i> [nm]	<i>w</i> ₁ [nm]	<i>w</i> ₂ [nm]
AFM	68.5	303	205
DBO Standard apparatus	72.7	297.3	197.3

• Measurement of samples with nominal DBO value of 150nm

▲ 单层建模	- 🗆 X					
套刻精度光散射测	量数据处理软件	Uncertainty components	<i>L</i> [nm]	<i>w</i> ₁ [nm]	<i>w</i> ₂ [nm]	Uncertainty sources
结构参数	不确定度来源/结果	Туре	A evaluation	<u>on</u>		
□周期d 1200 nm ☑ 线宽w1 320.1488 nm □ 誤厚h1 5 nm ☑ 线宽w2 201 nm	☆1和2x年u(η) 0.001 願厚u(n1) 1.16 nm 波长u(λ) 0.03 nm 腹厚u(h2) 2.89 nm	Spectra gathering repeatability	2.20	1.44	1.29	0.001
□ 旗厚h2 140 nm ✓ 套刻误差L 149.8839 nm □ 旗厚h3 40 nm □ 占宽比Δ 0.5	入射角u(θ) 0.03 ° 线宽u(w1) 4.2946 nm 周期u(d) 0.1 nm 线宽u(w2) 1.5503 nm	Туре	B evaluation	<u>on</u>		
材料参数 基底折射率ns 3.8827+0.019 波长λ 632.8 nm	加合结用	Incident angle θ	0.16	0.33	0.18	0.03°
観层折射车n1 1.4761 備振模式 TM模式 ~	载据导入 拟合残差MSE 4.172	Wavelength λ	0.02	0.02	0.04	0.03nm
膜层折射率n2 4.2063+0.422 自淮直半宽 2.5 °	拟合计算 拟合不确定度u(L) 4.2256 nm	Period d	0.02	0.01	0.04	0.1nm
0.8	12	Thickness h_1	3.30	3.91	0.28	Uniform dist., $\pm 2nm$
0.6	(%) (%)	Thickness h_2	1.45	0.98	0.79	Uniform dist., ± 5 nm
α ⁻ 0.4	振 6	Combined type B $u_{\rm B}$	3.61	4.05	0.86	
0.2	₩ 4 · · · · ·	Combined uncertainty u_c	4.23	4.29	1.55	
0 -30 -20 -10 0 10 20 30 入射角(°)	2 -60 -40 -20 0 20 40 入射角(°)	Expanded uncertainty U (k=2)	8.45	8.59	3.10	

• Measurement of samples with nominal DBO value of 150nm

	<i>L</i> [nm]	<i>w</i> ₁ [nm]	<i>w</i> ₂ [nm]
AFM	156.5	313	196
DBO Standard apparatus	149.9	320.1	201

Conclusions

- Summary
 - Developed a traceable DBO metrology method
 - Designed a new type of DBO reference standard target and apparatus
 - Experiments show uncertainty of (3~9) nm for DBO value of (50~150) nm
- Future work
 - Design and tape out of reference samples with smaller DBO values
 - Function optimization of reference apparatus (auto loading, wafer mapping, etc.)

Thanks for attention!

Q&A

© CEPREI

For more information:

- CEPREI Cal: www.ceprei-cal.com
- CEPREI: www.ceprei.com

科学 公正 服务 价值

• Wechat:

Lin Yang

CEPREI Cal

21